How Computers Store Data

© D.J. Barrow for CoderDojo

Lesson 1

Humans use 10 fingers to count which is why they like base 10, this means a base 10 digit counts from 0 to 9 (i.e. to 10-1)

The number 1018 base 10

	Thousands

	Hundreds
	Tens
	Ones

	1
	0
	1
	8

Is built up by

(1*1000)+(0*100)+(1*10)+(8*1)=1018 base 10

A “*” is a multiplication in most computer languages

Now for binary numbers which are base 2 & digits go from 0 to 1 (i.e. to 2-1)

Binary is useful because a decision being yes(1) or no(0),1 can be represented by a single bit,digit on a wire or stored in memory which is why computers like binary numbers.

	16
	8
	4
	2
	1

	1
	0
	1
	0
	0

16+4=20

Note that each binary digit/bit is twice the digit to its right just like each denary digit is 10 times it’s digit to the right.

This means that in binary multiplying by two is just adding a zero digit to the right

e.g. 40 in binary= 20*2.

	32
	16
	8
	4
	2
	1

	1
	0
	1
	0
	0
	0

40=32+8 or 20<<1

<< is the shift operator (it adds a zero to the right side of the binary number)

The >> operator divides by 2 e.g. 21 base 10 =10101 base 2

divided by 2=1010.1 base 2

numbers to the right side of the decimal point are fractions

starting with 1/2,1/4,1/8 just like 1/10,1/100,1/100 for base 10 numbers.

Hexadecimal (Base 16) numbers are a more compact way of representing binary numbers on paper these count like 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

A being 10, F being 15. It takes 4 bits to represent a hexadecimal number

e.g.

	8
	4
	2
	1

	1
	1
	0
	0

(1*8)+(1*4) = 12 = 0xC, 0x prefixing the number means it is hexdecimal

0xFFFF = (16*16*16*0xF)+(16*16*0xF)+(16*0xF)+(1*0xF)=65535

Addition is very similar to denary arithmetic all you need to know is that a carry happens when numbers go over 2 rather than over 9.

e.g. 5+3=8

	5
	0
	1
	0
	1

	3
	0
	0
	1
	1

	Carry In
	0
	1
	1
	0

	8
	1
	0
	0
	0

	
	5
	1
	2

	+
	9
	9
	8

	1
	5
	1
	0

Note that adding 998 to 512 if you drop the rightmost digit in the sum is the same as subtracting 2 (i.e 998 modulo 1000 is -2)., adding 999 (999 modulo 1000 is -1) is the same as subtracting 1, this is call 10’s compliment & is a way of

The same can be done with binary numbers. When working with 8 bits (a byte) adding 255 (binary 11111111) is the same as subtracting 1, adding 254 (binary 11111110) is the same as subtracting 2,

adding 128 (binary 1000000) is the same as subtracting 127, a binary number with the highest (most significant bit) set can be interpreted as a negative number, this method of doing signed arithmetic is called twos complement. The rightmost bit is called the most significant bit.

 ASCII numbers are a traditional way of representing latin characters in a byte.

e.g.

0-31 are on a unix Control codes

3=Ctrl C, stop program running in terminal on unix.

10=Line Feed, make computer terminaldrop to next line while typing

13=Carriage Return make computer terminal go back to start of line

32=Space

48-57=Digits 0-9

65-89=A-Z

97-122=a-z

Full list on www.asciitable.com
UniCode uses 2 byte codes to represent ever major character set in the world

e.g. Latin,Chinese,Russian,Korean & most importantly Klingon.

UTF8 has byte long codes to represent ascii & uses the high bit

To signify if a character code lengths of 2 to 3 bytes.

C Programs to try out, you need to install Cygwin on Window or a variant of Linux

e.g. Fedora or Ubuntu to run these. Cygwin is easier to install but if you want a new career & get rich in 2 years install & get good with Linux.

To compile these programs from a terminal type

gcc –g <filename>.c <filename>

Multiply By Three.

#include <stdio.h>

int main(int argc,char *argv[])

{

 int a=atoi(argv[1]);

 printf("a multiplied by 3=%d\n",(a)+(a<<1));

}

Ascii Table.

#include <stdio.h>

int main()

{

 int i;

 for(i=32;i<=127;i++)

 printf("%d %c\n",i,(char)i);

}

Twos Compliment

#include <stdio.h>

int main()

{

 unsigned int a,b;

 printf("enter two numbers seperated by spaces ");

 scanf("%u %u",&a,&b);

 printf("\n%u\n",(unsigned int)((unsigned char)((unsigned char)a+(unsigned char)b)));

}

Computer memory is organised ultimately in bits, a 32 bit computer (PC’s typically from before 2008).

A 32 bit computer means that computer registers mostly come in sizes of 32 bits & the maximum amount of RAM or (random access) memory they can easily access without kludges is 32 bits in size or 256*256*256*256 or 4*1024*1024*1024 bytes, 1024=1K yes a lot of memory enough to store one ASCII character for every person on the planet.

Computers organise memory in hierarchies

Registers are the fastest & used to store numbers being operated on e.g. adding two numbers together or checking if one number is greater than another & using this to make a decision to go somewhere else in a program to do something else because a joystick button was pressed.

Cache this is fast memory which stores the least recently used code & data in the hope it will be used again soon, this usually is built using static RAM technology.

DRAM or Dynamic RAM, Disk, Internet being the slowest.

Input Output in it’s simplest form looks like RAM & is mapped to look like DRAM,

A typical use would be to read an IO register of a joystick & getting back a value of

Between 0 to 255 for the X&Y coordinates & a single bit binary value for whether the mouse button was pressed.

For those who want to jump ahead further reading on the basics of Z80 machine code is @ http://www.sincuser.f9.co.uk/038/mcode.htm & left to you as your homework assignment & I’ll answer all your questions during the next session.

